HDP PROTOCOL

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised HDP Using Prior Knowledge

End users can find topic model results difficult to interpret and evaluate. To address user needs, we present a semi-supervised hierarchical Dirichlet process for topic modeling that incorporates user-defined prior knowledge. Applied to a large electronic dataset, the generated topics are more fine-grained, more distinct, and align better with users’ assignments of topics to documents.

متن کامل

Adsorption by TMA- and HDP-Montmorillonites

N 2 and CO 2 gases adsorption by tetramethylammonium(TMA)-montmorillonites and hexadecylpyridinium(HDP)-montmorillonites was carried out using volumetric equipment at 25 °C and 0.1 MPa. The addition of organic compounds to montmorillonites was 1 and 4 times the cation exchange capacity (CEC) of the montmorillonites and the contact times between the TMA (or HDP) and the montmorillonites were 4 a...

متن کامل

Collapsed Variational Inference for HDP

A wide variety of Dirichlet-multinomial ‘topic’ models have found interesting applications in recent years. While Gibbs sampling remains an important method of inference in such models, variational techniques have certain advantages such as easy assessment of convergence, easy optimization without the need to maintain detailed balance, a bound on the marginal likelihood, and side-stepping of is...

متن کامل

Stochastic Variational Inference for the HDP-HMM

We derive a variational inference algorithm for the HDP-HMM based on the two-level stick breaking construction. This construction has previously been applied to the hierarchical Dirichlet processes (HDP) for mixed membership models, allowing for efficient handling of the coupled weight parameters. However, the same algorithm is not directly applicable to HDP-based infinite hidden Markov models ...

متن کامل

Multi-HDP: A Non Parametric Bayesian Model for Tensor Factorization

Matrix factorization algorithms are frequently used in the machine learning community to find low dimensional representations of data. We introduce a novel generative Bayesian probabilistic model for unsupervised matrix and tensor factorization. The model consists of several interacting LDA models, one for each modality. We describe an efficient collapsed Gibbs sampler for inference. We also de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Vestnik komp'iuternykh i informatsionnykh tekhnologii

سال: 2016

ISSN: 1810-7206

DOI: 10.14489/vkit.2016.08.pp.052-056